Rabu, 30 Oktober 2013

Author : Husna Dharma Putera, Fak. Kedokteran Unair

Sistem muskuloskeletal batang tubuh terdiri dari spine (tulang belakang), tulang iga, pelvis dan fasia serta otot-otot yang terkait. Spine terdiri dari 24 semirigid presacral vertebra yang dipisahkan oleh diskus interveretebra yang relatif fleksibel, bersama 7 ligamen intervertebra yang  terbentang pada setiap set vertebra, dan 2 sendi sinovial pada setiap vertebra yang disebut sebagai zygapofiseal atau sendi facet. Spine dibagi menjadi 4 regio : servikal, thoraks, lumbal dan sakral. Sakral-coccyx  dibentuk oleh 9 vertebra yang terfusi menjadi satu tulang yang berartikulasi dengan dua tulang ilium (innominate bones) untuk membentuk pelvis.

Tulang dan Sendi
  • Vetebra

Pengecualian pada vertebra servikal bagian atas (C1 dan C2) yang dikenal sebagai atlas dan aksis, setiap vertebra memiliki struktur anterior yang disebut sentrum vertebral dan sebuah kompleks konfigurasi dari struktur posterior dan lateral. Konfigurasi ini membentuk struktur penting seperti arkus neural yang dibangun oleh pedikel dan lamina, dan membentuk kanal spinal. Prosesus spinosus dan transversus merupakan tempat perlekatan otot. Setiap vertebra memiliki artikular prosesus superior kanan dan kiri serta inferior kanan dan kiri, yang secara berdampingan akan membentuk sendi facet kanan dan kiri.

Sentrum vertebra terdiri dari tulang trabekular yang dikelilingi oleh lapisan kortikal yang tipis. Sentrum merupakan penahan utama terhadap beban kompresi dan shear. Sisi superior dan inferior vertebra disebut vertebral end plate, dimana pada orang dewasa muda, di bagian tengah dari end plate ditutupi oleh lapisan tipis kartilago hyalin (1 mm). 
    • Segmen atas vetebra servikalis
Struktur C-1 dan C-2 sangat spesial karena memfasilitasi ruang gerakan yang luas bagi kepala. Vertebra C-1 yang menopang kepala adalah tulang yang berbentuk cincin yang memiliki sendi facet superior yang baik. Dens merupakan sentrum C-2, memanjang secara vertikal dan membentuk aksis longitudinal dengan C-1 dan rotasi kepala. Gerakan sekitar aksis ini ditopang oleh ligamen transversus dan ligamen odontoid yang kuat dan sendi facet occiput-C1 dan C1-2.
  • Diskus Intervetebralis
Diskus intervertebralis merupakan struktur avaskukar terbesar di tubuh manusia, berperan sebagai pembatas yang fleksibel antar vertebra dan menahan beban kompresi yang disebabkan oleh gravitasi dan kekuatan otot. Diskus normal bersifat seperti sebuah dinding yang tebal yang dibentuk oleh anulus berisi cairan bertekanan. Diskus terdiri dari dua regio yakni nukleus pulposus bagian dalam dan anulus fibrosus. 

Ketika beban aksial melewati diskus, kekuatan eksternal tersebut akan ditahan oleh beberapa mekanisme antara lain peningkatan tekanan nukleus. Ketika diskus dalam keadaan steady state hidrasi, tekanan osmotik dibangun oleh hydrated proteoglikan yang ada di dalam nukleus dan membuat keseimbangan dengan stres yang terjadi. Jika intensitas stres semakin meningkat, air akan didorong keluar dari diskus sampai steady state tercapai. Jika stres menurun maka diskus akan mengalami rehidrasi kembali.  

Nutrisi diskus berasal dari difusi pembuluh darah yang ada di sekitar anulus dan melalui kapiler dasar yang berdekatan dengan kartilago end plate. 
  • Sendi Facet
Sendi facet khususnya pada kapsul sendinya kaya akan inervasi saraf sehingga bisa menjadi sember dari beberapa nyeri. Sendi facet secara serangkai menopang gerakan lekukan lateral dan torsi aksial. Permukaan sendi facet sendiri sangat kompleks dan nonplanar. Sebagai contoh, pada vertebra lumbalis bagian atas, permukaan sendi facet yang berlawanan cenderung pada bidang sagital sehingga aksial rotasi akan terbatas. Semakin ke kaudal, permukaan sendinya cenderung pada bidang frontal.

Berdasarkan pengukuran dengan menggunakan CT scan, rata-rata sudut antara permukaan facet kanan dan kiri pada bidang melintang meningkat dari 74o pada L3-4 menjadi 96o pada L4-5 dan 106o pada L5-S1. Meskipun demikian, terjadi variabilitas yang besar pada level L5-S1, dimana nilainya berkisar antara 36o – 180o. Luas area sendi facet pada vertebra lumbalis berkisar antara 100 sampai 350 mm2. Kedua sendi facet (kanan dan kiri) tidak selalu simetris. Ketidaksimetrisan ini disebut sebagai facet tropism. 

Pada beberapa studi tentang sifat mekanikal sendi facet menunjukkan bahwa sendi facet mampu menahan 10% - 20% beban kompresi spinal pada posisi berdiri dan lebih dari 50% terhadap beban anterior shear pada posisi fleksi ke depan.

Tekanan kontak sendi facet juga bisa diukur dimana pada posisi torsi sendi facet menahan beban kompresi yang berat. Hasil pengukurannya berkisar antara 4 – 26 Nm/kPa. Tekanan facet yang tertinggi tercatat pada posisi torsi, fleksi dan kompresi. Tekanan sendi facet juga meningkat jika terjadi penurunan tinggi diskus, dimana rata-rata tekanan akan meningkat menjadi 36% untuk kehilangan setiap 1 mm ketinggian diskus dan 61% untuk kehilangan 4 mm ketinggian diskus. 

Gerakan Kekakuan Segmen

Pengetahuan tentang sifat pemindahan beban (load-displacement  behaviour) dari spine dan komponennya, diperlukan analisis biomekanikal fungsi spine.  Uji mekanikal spine biasanya menggunakan 2 vertebra dan jaringan lunak yang terkait yang disebut sebagai gerak segmen spine atau unit fungsional spine. Menentukan kemampuan pemindahan beban didapatkan dengan cara memegang vertebra yang di bawah dan memberikan tekanan pada vertebra di atasnya, maka bisa diukur secara langsung hasil pemindahannya. Dengan cara ini bisa ditentukan koefisien fleksibilitas matriks. 
  • Vetebra Servikalis
Kemampuan kompleks occiput-C1-2 terhadap tes moment 0.3 Nm menghasilkan skala rotasi dari 3o pada lengkungkan lateral sampai 14.5o pada torsi aksial di C1-2, dan 16o pada ekstensi di occiput-C1.
  • Vetebra Thorakalis
Rata-rata nilai kekakuan vertebra thorakalis berkisar dari 100 N/mm pada lateral shear sampai 900 N/mm pada anterior atau posterior shear, dan 1250 N/mm pada kompresi. Kekakuan rotasional sekitar 2 -3 Nm/deg pada fleksi, ekstensi, lengkungan lateral dan torsi aksial.
  • Vetebra Lumbalis
Kekakuan gerak segmen lumbalis berkisar dari 600 – 700 N/mm pada kompresi aksial, dan 100 – 200 N/mm pada anterior, posterior atau lateral shear. Kekakuan rotasional berkisar dari 1 – 2 Nm/deg pada fleksi, ektensi, dan lengkungan lateral, dan 6.8 Nm/deg pada torsi aksial.

Referensi
Schultz AB, Miller AA. Biomechanics of the Human Spine. In Mow VC, Hayes WC, editors.  Basic Orthopaedic Biomechanics. New York : Raven Press,Ltd. 1991. pp. 337-68.

Senin, 28 Oktober 2013





REFERENSI :
  • Fysh, P. Chiropractic Care for the Pediatric Patient, 1st ed.Arlington; ICA Council on Chiropractic Pediatrics; 2002
  • McMullen, M. Assessing Upper Cervical Subluxations in Infants Under Six Months. ICA International Review of Chiropractic 
  • March/April 1990, 39-41.    
  • Seidel H, Ball J, Dains J, Benedict GW. Mosby's Guide to Physical Examination, 3rd ed. St. Louis, Von Hoffman Press Inc.; 1995
  • Anrig C, Plaugher G. Pediatric Chiropractic. Baltimore, Williams & Wilkins; 1998


Selasa, 30 April 2013


Bagaimana pendekatan terkini terhadap nyeri kepala dan vertigo itu diberikan oleh tenaga kesehatan ?
How current approaches to headache and vertigo was given by the health workers?

let's join us with SEMINAR & WORKSHOP NASIONAL
"PENDEKATAN TERKINI Fisio-Mediko Bebas Nyeri Kepala & Vertigo"
Free Pain of Headache and Vertigo with Physio-Medical Approach
Didukung oleh Fisio Medikal

Tanggal/Date : June, 2, 2013.

HTM :
  • Sebelum tanggal 25 Mei 
    • Mahasiswa : IDR 100.000, Umum/praktisi kesehatan : IDR 140.000 
  • Setelah tanggal 25 Mei 
    • Mahasiswa : IDR 120.000, Umum/praktisi kesehatan : IDR 165.000 
@Balai Krida Husada, Poltekkes Kemenkes Surakarta, Mojosongo, Surakarta
IFI : 2 SKP
PPNI : 2 SKP
HAKTI : 2 SKP

 Pemateri :
  • dr. Agus Sudomo, Sp. S (K) 
    • Dokter spesialis saraf ternama lulusan Universitas Gajah Mada. 
  • Addi Mardi Harnanto, MN 
    • Dosen keprawatan Poltekkes Surakarta lulusan School of Nursing, The University of Melbourne. 
  • dr. Michael Wicaksono, M. med 
    • Dosen akupuntur Poltekkes Surakarta lulusan Medicine University, Hongzhou, China
  • Heru Purbo Kuntono, Dipl. PT, M. Kes 
    • Dosen fisioterapi Poltekkes Surakarta lulusan Hogeschool van Amsterdam, Belanda. 









































Selasa, 05 Februari 2013





Comparison of High-Grade and Low-Grade Mobilization Techniques in the Management of Adhesive Capsulitis of the Shoulder: Randomized Controlled Trial.
Henricus M Vermeulen, Piet M Rozing, Wim R Obermann, Saskia le Cessie and Thea PM Vliet Vlieland PHYS THER. 2006; 86:355-368.


ABSTRACT

Background and Purpose. In many physical therapy programs for subjects with 
adhesive capsulitis of the shoulder, mobilization techniques are an important 
part of the intervention. The purpose of this study was to compare the 
effectiveness of high-grade mobilization techniques (HGMT) with that of 
low-grade mobilization techniques (LGMT) in subjects with adhesive capsulitis 
of the shoulder. 

Subjects. One hundred subjects with unilateral adhesive 
capsulitis lasting 3 months or more and a 50% decrease in passive joint 
mobility relative to the nonaffected side were enrolled in this study. 

Methods
Subjects randomly assigned to the HGMT group were treated with intensive 
passive mobilization techniques in end-range positions of the glenohumeral 
joint, and subjects in the LGMT group were treated with passive mobilization 
techniques within the pain-free zone. The duration of treatment was a 
maximum of 12 weeks (24 sessions) in both groups. Subjects were assessed at 
baseline and at 3, 6, and 12 months by a masked assessor. Primary outcome 
measures included active and passive range of motion and shoulder disability
(Shoulder Rating Questionnaire [SRQ] and Shoulder Disability Questionnaire 
[SDQ]). An analysis of covariance with adjustments for baseline values 
and a general linear mixed-effect model for repeated measurements were 
used to compare the change scores for the 2 treatment groups at the various
time points and over the total period of 1 year, respectively. 

Results. Overall, 
subjects in both groups improved over 12 months. Statistically significant 
greater change scores were found in the HGMT group for passive abduction 
(at the time points 3 and 12 months), and for active and passive external 
rotation (at 12 months). A statistically significant difference in trend between 
both groups over the total follow-up period of 12 months was found for passive 
external rotation, SRQ, and SDQ with greater change scores in the HGMT 
group. 

Discussion and Conclusion. In subjects with adhesive capsulitis of the 
shoulder, HGMTs appear to be more effective in improving glenohumeral
joint mobility and reducing disability than LGMTs, with the overall differences 
between the 2 interventions being small. [Vermeulen HM, Rozing PM, 
Obermann WR, et al. Comparison of high-grade and low-grade mobilization 
techniques in the management of adhesive capsulitis of the shoulder: 
randomized controlled trial. Phys Ther. 2006;86:355–368.]

Full text dapat di download disini

Sabtu, 02 Februari 2013



Initial rehabilitation phase
0-4 weeks

Goals:
  • To be safely and independently mobile with appropriate walking aid, adhering to weight bearing status
  • To be independent with home exercise programme as appropriate
  • To understand self management / monitoring, e.g. skin sensation, colour, swelling, temperature, circulation

Restrictions:
  • Ensure that weight bearing restrictions are adhered to:
    • Total Ankle Replacement (TAR):
      • Non Weight Bearing (NWB) for 2 weeks in Back Slab
      • Below Knee Plaster of Paris (BK POP) at 2 weeks. Progress to Full Weight Bearing (FWB) in POP.
      • POP removed at 4 weeks. May require aircast boot. FWB.
    • If any other surgical technique used ensure you check any restrictions with team as these may differ from TAR alone
  • Elevation
  • If sedentary employment, may be able to return to work from 4 weeks post-operatively, as long as provisions to elevate leg, and no complications

Treatment:
  • Likely to be in POP
  • Pain-relief: Ensure adequate analgesia
  • Elevation: ensure elevating leg with foot higher than waist
  • Exercises: teach circulatory exercises
  • Education: teach how to monitor sensation, colour, circulation, temperature, swelling, and advise what to do if concerned
  • Mobility: ensure patient independent  with transfers and mobility, including stairs if necessary

Recovery rehabilitation phase
4 weeks – 3 months

Goals:
  • To be independently mobile out of aircast boot
  • To achieve full range of movement
  • To optimise normal movement

Restrictions:
  • Ensure adherence to weight bearing status.
  • No strengthening against resistance until at least 3 months post-operatively of any tendon transfers if performed.
  • Do not stretch any tendon transfers / ligament reconstructions if performed. They will naturally lengthen over a 6 month period

Treatment:
  • Pain relief
  • Advice / Education
  • Posture advice / education
  • Mobility: ensure safely and independently mobile adhering to appropriate weight bearing restrictions. Progress off walking aids as able once reaches FWB stage.
  • Gait Re-education
  • Wean out of aircast boot once advised to do so, and provision of plaster shoe as appropriate, if patient unable to get into normal footwear
  • Exercises:   
    • Passive range of movement (PROM)
    • Active assisted range of movement (AAROM)
    • Active range of movement (AROM)
    • Strengthening exercises as appropriate
    • Core stability work
    • Balance / proprioception work once appropriate
    • Stretches of tight structures as appropriate (e.g. Achilles Tendon), not of tendon transfers / ligament reconstructions if performed.
    • Review lower limb biomechanics. Address issues as appropriate.
    • If tendon transfer performed, encourage isolation of transfer activation without overuse of other muscles. Biofeedback likely to be useful.
  • Swelling Management
  • Manual Therapy:
    • Soft tissue techniques as appropriate
    • Joint mobilisations as appropriate ensuring awareness of osteotomy sites and those joints which may be fused, and therefore not appropriate to mobilise
  • Monitor sensation, swelling, colour, temperature, circulation
  • Orthotics if required via surgical team
  • Hydrotherapy if appropriate
  • Pacing advice as appropriate

Intermediate rehabilitation phase
12 weeks – 6 months

Goals:
  • Independently mobile unaided
  • Wearing normal footwear
  • Optimise normal movement
  • Grade 5 muscle strength around ankle
  • Grade 4 muscle strength of tendon transfers if performed

Treatment:
Further progression of the above treatment:
  • Pain relief
  • Advice / Education
  • Posture advice / education
  • Mobility: Progression of mobility and function
  • Gait Re-education
  • Exercises:   
    • Range of movement
    • Strengthening exercises as appropriate
    • Core stability work
    • Balance / proprioception work
    • Stretches of tight structures as appropriate (e.g. Achilles Tendon), not of transfers / ligament reconstructions if performed.
    • Review lower limb biomechanics. Address issues as appropriate.
    • If tendon transfer performed progress isolation of transfer activation without overuse of other muscles. Biofeedback likely to be useful.
  • Swelling Management
  • Manual Therapy:
    • Soft tissue techniques as appropriate
    • Joint mobilisations as appropriate ensuring awareness of those which may be fused and therefore not appropriate to mobilise
  • Monitor sensation, swelling, colour, temperature, circulation
  • Orthotics if required via surgical team
  • Hydrotherapy if appropriate
  • Pacing advice as appropriate


Final rehabilitation phase
6 months – 1 year

Goals:
  • Return to gentle no-impact / low-impact sports
  • Establish long term maintenance programme
  • Grade 4 or 5 muscle strength of tendon transfers if performed

Treatment:
  • Mobility / function: Progression of mobility and function, increasing dynamic control with specific training to functional goals
  • Gait Re-education
  • Exercises:   
    • Progression of exercises including range of movement, strengthening, transfer activation, balance and proprioception, core stability
  • Swelling Management
  • Manual Therapy:
    • Soft tissue techniques as appropriate
    • Joint mobilisations as appropriate ensuring awareness of those which may be fused and therefore not appropriate to mobilise
  • Pacing advice 
Failure to progress

If a patient is failing to progress, then consider the following:

POSSIBLE PROBLEM
ACTION
Swelling
Ensure elevating leg regularly
Use ice as appropriate if normal skin sensation and no contraindications
Decrease amount of time on feet
Pacing
Use walking aids
Circulatory exercises
If decreases overnight, monitor closely
If does not decrease overnight, refer back to surgical team or to GP
Pain
Decrease activity
Ensure adequate analgesia
Elevate regularly
Decrease weight bearing and use walking aids as appropriate
Pacing
Modify exercise programme as appropriate
If persists, refer back to surgical team or to GP
Breakdown of Wound e.g inflammation, bleeding, infection
Refer to surgical team or to GP
Transfer not activating
Start working in NWB gravity eliminated position with AAROM and then build up as able
Biofeedback
Ensure adequate analgesia as appropriate
Ensure swelling under control as appropriate
Ensure foot neutral when mobilising to avoid excessive shear. Consider orthotics referral via surgical team if unable to keep neutral
Refer back to surgical team if no improvement
Numbness / altered sensation
Review immediate post-operative status if possible
Ensure swelling under control
If new onset or increasing refer back to surgical team or GP
If static, monitor closely, but inform surgical team and refer back if deteriorates or if concerned
Summary of evidence for physiotherapy guidelines

A comprehensive literature search was carried out to identify research relating to surgery for tibialis posterior tendon dysfunction and subsequent rehabilitation. After reviewing the articles and information, the physiotherapy guidelines were produced on the best available evidence.
  • Ali et al (2007) “Intermediate results of Buechel Pappas unconstrained uncemented Total Ankle Replacement for osteoarthritis” The Journal of Foot and Ankle Surgery 46, (1): 16-20
  • Buechel et al (2004) “Twenty-year evaluation of cementless mobile-bearing Total Ankle Replacements” Clinical Orthopaedics and Related Research 424, 19-26
  • Coetzee J & Castro M (2004) “Accurate measurement of ankle range of motion after Total Ankle Arthroplasty” Clinical Orthopaedics and Related Research 424, 27-31
  • Conti S & Wong YS (2001) “Complications of Total Ankle Replacement” Clinical Orthopaedics and Related Research 391, 105-114
  • Griesberg J & Hansen S (2003) “Total Ankle Arthroplasty in the advanced flatfoot” Techniques in Foot and Ankle Surgery 2, (3): 152-161
  • Knecht et al (2004) “The Agility Total Ankle Arthroplasty” The Journal of Bone and joint Surgery 86-A, (6): 1161-1171
  • Kobayashi et al (2004) “Ankle arthroplasties generate wear particles similar to knee arthroplasties” Clinical Orthopaedics and Related Research 424, 69-72
  • Kotnis et al (2006) “The management of failed ankle replacement” The Journal of Bone and Joint Surgery 88-B, (8): 1039-1047
  • Lalonde K & Conti S (2006) “Ankle arthritis: current status of ankle replacement versus fusion and other treatment modalities” Current Opinion in Orthopaedics 17, (2): 117-123
  • Mendolia et al (1005) “Lond term (10-14 years) results of the Ramses Total Ankle Arthroplasty” Techniques in Foot and Ankle Surgery 4, (3): 160-173
  • Spirt et al (2004) “Complications and failure after Total Ankle Arthroplasty” The Journal of Bone and Joint Surgery 86-A, (6): 1172-1178
  • Tochigi et al (2005) “The effect of accuracy of implantation on range of movement of the Scandinavian Total Ankle Replacement” The Journal of Bone and Joint Surgery 87-B, (5): 736-740
  • Valderrabano et al (2006) “Sports and recreation activity of ankle arthritis patients before and after Total Ankle Replacement” The American Journal of Sports Medicine 34, (6): 993-999
Sumber :
Royal National Orthopaedic Hospital In association with the UCL Institute of Orthopaedics and Musculoskeletal Science

Subscribe to RSS Feed Follow me on Twitter!